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Peculiarity of the Dickinson H~ wave function 
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According to the zero potential energy criterion proposed recently, the Dick- 
inson wave function for the 2po-~ state of the H~- system is an unexpectedly 
poor approximation so long as the known parameters are employed. We 
re-examine the optimum parameters for the Dickinson wave function and 
find that there exist two sets of optimum parameters with different wave 
function characteristics. The corresponding energy curves cross at R = 
1.91 a.u., though the difference is very small. We suggest that a new set of 
optimum parameters with slightly higher energy for R > 1,91 a.u. is more 
acceptable physically than the previously reported set. 
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1. Introduction 

In a recent paper [1], the zero potential energy criterion (Ezp), which is a possible 
partner to the zero momentum energy criterion (E~m) [2, 3], has been proposed 
as a measure for assessing the accuracy of  approximate wave functions. Applica- 
tions of  Ezp for several approximate wave functions of the H~- molecule have 
revealed that it is a very sensitive and effective criterion to appraise the accuracy 
of wave functions. In the ground l s% state, the accuracy of approximate wave 
functions assessed by Ezp has been almost parallel to the one anticipated by the 
corresponding energy expectation values, but in the first excited 2po-, state, this 
tendency has not been found. Surprisingly, the Dickinson wave function, which 
incorporates the 2po" polarization function (with exponent ~p) in the minimal Is 
basis (with exponent ~) ,  has shown a worse behavior than that of the simple 
LCAO wave function of  ls AO's, so long as we employ the parameter values 
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reported in previous papers [4, 5]. Furthermore, the zero potential energy criterion 
unexpectedly concludes that the wave function obtained by the constrained 
optimization [6] ffs = ffp (Dickinson-a wave function in [1]) is superior to the one 
obtained by the independent variation of ffs and ffp (Dickinsonrb wave function 
in [1]). 

The purpose of this paper is to investigate these peculiarities of the Dickinson 
H~- wave function for the 2po-~ state and to assign the most acceptable parameters. 
We first examine the energy surface of the system as a function of the exponents 
ffs and ffp at the nuclear separation R--2.0 a.u. As a result, we find that there 
exist two local energy minima with different values of the parameters. One, which 
corresponds to the parameters reported previously, has an inwardly polarized 
electron distribution, while the other, which is newly found and slightly unfavor- 
able energetically, has an outwardly polarized electron distribution. The zero 
potential energy criterion suggests the adequacy of the latter as an approximate 
wave function for the 2ptru state (Sect. 2). The physical acceptability of the new 
wave function is further supported by the comparison with the exact wave function 
and by the local energy consideration (Sect. 3). Atomic units are used throughout 
this paper. 

2. Two energy minima in the 2ptr, state 

The normalized Dickinson wave function for the 2po-u state of H~- is given by [4-6], 

~b(r) = (2 + 2c 2 -  2S)-l/2{[(ls)a + c(2ptr)a ] -- [(lS)b-- c(2ptr)b]), (1) 

where 

S = Sss -2CSsp q- c2Spp, (2a) 

Ss~ -- f (ls)~(lS)b dr, (2b) 

Ssp = f (ls)~(2po')b dr, (2c) 

Spp -- I (2Ptr)~(2P~ dr, (2d) 

and (lS)a and (2ptr)a denote hydrogenic orbitals on the nucleus a with exponents 
~'s and ~'p, respectively. The orbitals (lS)b and (2ptr)b have analogous meaning, 
but we use the common z-axis pointing from a to b for (2po-)~ and (2ptr)b. The 
Dickinson wave function (Eq. (1)) contains three variational parameters ffs, ffp, 
and c, the last being the mixing coefficient. 

At the internuclear distance R = 2.0, the contour map of the electronic energy E 
is shown in Fig. 1 as a function of the two exponents. In this case, the remaining 
parameter c is variationally determined for given ffs and ~'p. In Fig. 1, it is very 
clear that there are two local minima of energy (labelled by A and B) in the 
parameter space. The properties of these minima are compared in Table 1. The 
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Fig. 1. Contour map of the Dickinson elec- 
tronic energy for the 2ptr, state of the H~- 
molecule at R=2.0 .  Contour values are 
-0.6664, -0.6662, -0.6660, -0.6655, 
-0.6650(0.0025)-0.6500 from the innermost 
curves surrounding the minima A and B 
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minimum A corresponds to the already-known parameters,  whereas the minimum 
B (its energy is higher than A only by 0.000120 a.u.) is newly found in this study. 
The notable difference between the two is that the minimum A has a positive c 
and hence an electron distribution polarized inwardly but the minimum B has a 
negative c leading to an electron distribution polarized outwardly. The latter 
seems reasonable judging from the antibonding nature of  the 2ptr, state. This is 
also supported by the zero potential energy values: The comparison of Ezp'S at 
R = 2.0 (Table 1) shows that the minimum B has a closer value to the exact one 
than the minimum A. The Ezp of the minimum B also occupies a proper  position 
in Table I I I  of  [1], in which energy expectation values together with Ezp'S of 
various approximate wave functions with different levels of  accuracy were com- 
pared. These two minima are also examined at various values of  R as summarized 
in Table 2. We see that the trends observed at R = 2.0 remain unaltered. From 
Table 2, it can be seen that the corresponding two energy curves cross at Rc - 1.91, 
though the difference is rather small for R > 1.5. The trajectories of  the two 
exponents ffs and ffp are shown in Fig. 2 as a function of R. It is understood that 
these trajectories neither join nor cross. Namely the two minima are characterized 
by the positivity and negativity of  the parameter  c for the whole range of R, and 

Table 1. Comparison of the two energy minima in the 2ptr. state of the H~- 
molecule at R = 2.0 

Minimum A Minimum B Exact 

E -0.666597 -0.666477 -0.667534 a 
c +0.050341 -0.029593 - -  

0.835572 0.916083 - -  
~v 0.632507 1.457379 - -  
Ezv -0.200032 -0.419604 -0.667534 b 

" [ I ]  
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Fig. 2. Trajectories of the two set of the optimized 
exponents ~s and ~'p as a function of R 
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hence we hereafter use the subscripts + and  - to dis t inguish the properties 
accompan ied  with them. In  what  follows, the propriety of the two wave funct ions  

to describe the 2po-u state will be examined through the contour  maps  of wave 
funct ions  $ ( r )  and  local energies e(r) .  

3. Comparison of  wave functions and local energies 

The wave funct ions  g,§ and  ~b_ at R = 2.0 are i l lustrated in Fig. 3 as well as the 

exact one ~be [7]. We first compare  the wave funct ions  r247 and  0e: Their  behaviors 
are similar to each other within a circle with the radius 6 centered on the midpo in t  

of the nuclei .  However,  the deviat ion becomes larger as the radius increases and  

a noda l  surface appears  in 0§ at the radius 8 or so, which never  occurs in ~be. 
The phase of ~b§ becomes opposite outside this surface, and  the wave funct ion  
0§ represents itself a proper ty  of the 3po-~ state. Next we compare  the wave 
funct ions  ~,_ and  0e: Their  behaviors quite resemble one another  within a circle 

1: ........ lo o8 b ................ i ....... 10cG8 
~ 4 " ~ ) ~ '  

�9 i o . . . . . . . . . . .  
0 2 4 6 8 1 0  0 2 4 6 8 10  0 2 4 6 S 10  

z / a . u ,  z / a . u ,  z / a . u .  

Fig. 3a--e. Quadrant comparison of the 2p~, wave functions te(x, 0, z), $+(x, 0, z), and $ (x, 0, z) 
at R =2.0. Positive values (solid lines) are 2 n (n = 2, 3, . . . ,  13) and negative values (dotted lines) 
are -2-" x 10 -3 (n = 3, 4, 5). The chain line in b is the contour of zero value, a Se(x, 0, z); b $+(x, 0, z); 
c r O, z) 
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of  the radius 4 and the contour maps almost overlap in this region. Beyond this 
radius, the difference increases gradually, and q,_ has a larger amplitude than 0e 
in the long range tail. Nevertheless, the wave function ~0_ does not have any 
superfluous nodes (except for the node bisecting the bond) as found in ~0+. Thus 
the wave function qJ_ is favorable, at least qualitatively, than 0+. 

Secondly, we compare the local energy maps. Let the Hamiltonian of  the system 
be H(r). Then the local energy e(r) is defined by [8] 

e(r) = [ H(r)q,(r)]/tp(r). (3) 

If  O(r) is an exact eigenfunction of H(r), e(r) is nothing but its eigenvalue and 
independent of  r. In the case of an approximate q,(r), the local energy e(r) is 
no longer a constant and fluctuates as r varies. The degree of fluctuation then 
reflects directly the accuracy of  the wave function considered. The zero potential 
energy Ezp employed in Sect. 2 is defined as 

gzp = lim e(r), (4) 
r---~ oo 

in the present case. 

Comparison of the contour maps of local energies e+ and e_, corresponding to 
q,+ and 0 -  respectively, is presented in Fig. 4 for R = 2.0. At the nuclear positions 
( x = y  =0,  z =  • both of  e+ and e_ diverge towards a positive infinity. The 
e+ map also contains an additional divergence on the surface corresponding to 
the superfluous node discussed above. It is readily observed from Fig. 4 that e+ 
map is full of variety compared with e_ map: Indeed, the intervals of the contour 
lines are narrower in e+ and even positive values happen. These observations 
mean that q,+ is a very poor  approximate wave function. In view of  these facts, 
it can be said that the wave function ~0_ which yields the less r-dependent e_ is 
better than 0+. 

1 0  I J I t I a 1 0  i i i i i i i i b 

i . . . . . . . . . . .  
0 2 4 6 8 I0 

z/a .u ,  z /a .u.  

Fig. 4a,b. Quadrant  comparison of the local energy contour maps  e+(x, 0, z) and e_(x, 0, z) at R = 2.0. 
Positive values (dotted lines) are 0.1(0.1)0.5 and negative values (solid lines) are -0 .8(0 .02)-0 .02 .  In 
a, the chain line corresponds to zero, and the cross marks represent the divergent (discontinuous) 
region. In b, the contours with -0.80,  -0.78, and -0 .76  do not  appear, a e+(x, 0, z); b e_(x, 0, z) 
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4. Conclusion 

33 

The Dickinson wave function for the 2peru state of  H2 has been found to have 
a peculiarity that there exist two energy minima with respect to the two exponents 
involved. The corresponding wave functions have quite different characteristics. 
Detailed examinations of  the contour maps for the wave functions ~b+ and ~b_, 
and the local energies e+ and e_, as well as the associated zero potential energies, 
suggest that the newly found energy minimum and wave function are more 
physically acceptable as the 2peru state than those hitherto believed. I f  one strongly 
insists on the variational principle, he may claim that our conclusion is wrong, 
since the new wave function has a slightly higher energy (for some R-region) 
than the already-known wave function. However, we can cite a few sentences 
from Lesk's physical chemistry text [9]; "The wave function that corresponds to 
the best approximation to the energy may not be the best approximation to the 
wave function. It need not give the best approximation to properties other than 
the (ground state) energy." (See also [10].) 

The Dickinson wave function for the H~ system represents the simplest case of  
a familiar technique of the inclusion of polarization functions into the minimal 
basis set to improve the wave function. Nevertheless, the present study shows 
that the appropriate choice of  parameters is not so straightforward, and suggests 
that one should be careful particularly to the exponents of  additional polarization 
functions in the general quantum-chemical calculations. 
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from the Ministry of Education of Japan. 
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